If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+160x+250=0
a = -4; b = 160; c = +250;
Δ = b2-4ac
Δ = 1602-4·(-4)·250
Δ = 29600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29600}=\sqrt{400*74}=\sqrt{400}*\sqrt{74}=20\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-20\sqrt{74}}{2*-4}=\frac{-160-20\sqrt{74}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+20\sqrt{74}}{2*-4}=\frac{-160+20\sqrt{74}}{-8} $
| 12=20x-4 | | c/4=4 | | x^2-40x-62.5=0 | | 6m+3=2m−42 | | 3+4(z15)=31 | | B=5x+25A=8x-8 | | 6x-3=5x-8 | | 3,5x+2=3.35+5 | | x4-8x2-16x+16=0 | | 4/n=7/12 | | m/9=4.5 | | 19=8×+3-4x | | 2x-14=2x-9 | | 2r+0.75=5r | | 35=25+2x-7x | | 9(y+1)=18·54 | | f(4)=4(4)+5 | | 2x-14=2x-9=2 | | 2/9x=70 | | 2(3x-1)-5=9x-16 | | 18x=4x+8 | | 15/(x+3)=5/3 | | 49-m=14 | | 4.5(8-x)+36=102-2.5(3x=24) | | 6z=4z+4 | | 0x+6=8x+4 | | 2x-5+4x=-2x+27 | | 2x+3=1x+ | | 6x34x-8=10(4x+6) | | -5(x-3)-2=27+2x | | 2x-5+4=2x+27 | | 5y=154 |